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Abstract 1
Consider an acyclic undirected network G = (V,E) with node

set V and arc set E whose arcs are subject to random failure.

, Let s be a node in V and T a set of nodes in V such that s i T.

This paper presents a relatively complete and comprehensive de-

scription of a general class of Monte Carlo sampling plans for

estimating g = g(s,T), the probability that s is connected to all

nodes in T. The paper also provides procedures for implementing

these plans. Each plan uses known lower and upper bounds [B,A]

on g to produce an estimator of g that has a smaller variance

(A-g)(g-B)/K than one obtains for crude Monte Carlo sampling
-'.

(B-O, A-i) on K independent replications. The paper describes

worst case bounds on sample sizes K, in terms of B and A, for

meeting absolute and relative error criteria. It also gives the

worst case bound on the amount of variance reduction that can be

expected when compared with crude Monte Carlo sampling.

Two plans are studied in detail for the case T - {0. An

example illustrates the variance reductions achievable with these

plans. The paper next shows how to assess the credibility that a

specified error criterion for g is met as the Monte Carlo experi-

ment progresses and then shows how confidence intervals can be
V..

computed for g. Lastly, the paper summarizes the steps needed to

implement the pro sed technique.
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Introduction

Consider an acyclic undirected network G - (V,E) with node

set V and arc set E. Suppose that nodes are perfect but that

arcs are subject to random failure. Let s be a node in V and T a

set of nodes in V such that s i T. The purpose or this paper

is to present a relatively complete and comprehensive description

of a general class of Monte Carlo sampling plans for estimating

g(s,T), the probability that s is connected to all nodes in T.

The paper also provides procedures for implementing these plans.

In the single node case with T = fti, we speak of s-t connected-

ness; when T V - {s}, we speak of network connectedness.

Since it is well known that direct computation of g(s,T)

generally requires exponential time, a variety of alternative

methods have been proposed to approximate g(s,T). Notable among

these proposals are those based on bounds and on Monte Carlo meth-

ods. As an example of bounds, Esary and Proschan (1963, Thin.

4.1) describe a lower bound that derives from a network G1 -

(V,E) in which all minimal cutsets are disjoint and describe an

upper bound that derives from a network G 2 = (V,E) in which all

minimal paths are disjoint.

Any attempt to use bounds raises two important questions.

First, are the bounds sufficiently tight to forgo the need for a

more precise computation of g(s,T) and second, how much time does

the computation of the bounds require? Note that if the computa-

tion of bounds for a proposed method takes exponential time in

either Ivl or IEI in general, then the question of tightness is



merely an academic one. This is so for the Esary and Proschan

bounds.

Monte Carlo sampling is the other major approach to approxi-

mating g(s,T). Whereas all techniques of evaluation accumulate

numerical error as the size of the network grows, the Monte Carlo

method additionally introduces sampling error. To appreciate the

significance of this error, we note that, if each arc is either

on or off, there are 2 14 possible states of the network. There-

fore, K replications of a Monte Carlo experiment can at best

account for only a small number of these states when N is even

moderate in size, and this limitation introduces sampling error.

Since sampling error for independent trials or replications

decreases as 1/K 1 / 2 , it is clear that more replications means a

smaller error. Therefore, the cost of a Monte Carlo depends on K

which in turn depends on the level of sampling error one is pre-

pared to accept and on the cost per replication. Two concepts of

sampling error arise in practice, one absolute and the other rel

ative. Let g denote an unbiased estimate of g g(s,T) based

on K replications. Then to achieve an absolute error no larger

than c > 0 with confidence level greater than 1-8, one needs to

collect

K - minEk: pr( k - g I > C) S (1)."

replications. For a relative error no greater than c on g one

needs

S .. .- , . . . .
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K = mink: pr( > E) S 6] (2)
g . -

replications. For a relative error no greater than E on the fail-

ure probability 1 - g one needs

K = min[k: pr( - > ) S 6] (3)
l-g

replications.

A major consideration in using the Monte Carlo method is to

achieve one or more of these error objectives while keeping K and

the cost per replication within reason. Variance reducing techni-

ques described in Van Slyke and Frank (1972), Kjmamoto, Tanaka

and Inoue (1977), Easton and Wong (1980), Kumamoto, Tanaka, Inoue

and Henley (1980), Karp and Luby (1983) and Fishman (1983a,

1983b) are all intended to make K smaller than it otherwise would

be if crude Monte Carlo sampling were used. Among these only the

Karp and Luby proposal addresses the issue of how cost grows as a

function of 6 and E. In particular, their method achieves (3) in

0( II m) time where m denotes the number of failure sets of the

network. Since this approach requires the determination and stor-

* age of all m failure sets prior to performing the sampling experi-

ment and since m can be large in practice, the approach has a

clear limitation. A shortcoming of all other approaches is that

none provides an a priori estimate of how large K needs to be in

order to achieve a specified error bound.

.... ...................................................... . * ... .... . . . . . . . . . . . . . . .. . . . . . .' .' '
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The present paper introduces the general concept of a Monte

Carlo sampling plan that relies explicitly on the use of a priori

bounds 0 < B g(s,T) < A < I to estimate g(s,T) unblasedly.

Section 1 describes the plan and shows that every such sampling

*plan leads to a smaller variance var gand to smaller coerf'i-

Kcients of" variation Y(gK A,B) - (vat K)112/g and Y(1-gK A,B)-

(var 9K) 1/(1 - g) than obtain for crude Monte Carlo sampling.

Moreover, worst case bounds can be computed for all these quanti-

ties in terms of A and B. These worst case bounds enable one to

compute upper bounds on K for criteria (1), (2) and (3) thus pro-

viding valuable information prior to beginning the sampling exper-

iment. The paper next derives the worst case lower bound on the

*. variance reduction achievable when compared with crude Monte

Carlo sampling.

Each sampling plan has three major time related cost consid-

erations: 1) the time to compute A and B prior to sampling, 2)

the time to sample the status of each arc in E on each replica-

tion and 3) the time to determine connectedness on each replica-

tion. With regard to this last cost, we assume that a depth-

first search algorithm as in Aho, Hopcroft and Ullman (1974, p.

176) is used which takes O(max( lv, 14 )) time.

Section 2 shows that these general sampling plans include

the Van Slyke and Frank (1972) bounds as a special case. When

failures occur independently with identical failure probabili-

ties, the computation of A and B takes O( 14 ) time and sampling

.............................................. .. '.-............................... ....... +...... ....... ..... ..... .......



per replication also takes 0( 10 ) time. Section 3 shows how the

method of Kumamoto, Tanaka and Inoue (1977) also fits into this

class of sampling plans. Since their suggested implementation

can require exponential time to compute A and B and more than

0( l0 ) time per replication for sampling, we describe an alterna-

tive approach that takes 0( 10 ) time for computing A and B and

for sampling per replication. For fixed 6 and e the results for

bounds and timings lead to (1) in 0(max( JA , 10 )(A-B) 2 ) time, to

(2) in O(max( l , 14 )(A-B) 2 /AB) time and to (3) in

0(max( l 1 IE )(A-B) 2 /(1-A)(1-B)) time.

Section 4 illustrates how the proposed sampling plan works

for estimating s-t connectedness for a 30 arc network for the Van

Slyke and Frank (VSF) bounds and for the Kumamoto, Tanaka and

Inoue (KTI) bounds. Section 5 then shows how to assess the credi-

bility that a specified error criterion for 1-g is met as K in-

creases. Section 6 next shows how one can derive confidence in-

tervals for g by using exact sampling theory, Chebyschev-like

bounds and a normal approximation. Section 7 summarizes all the

steps needed to implement a Monte Carlo sampling plan using the

KTI bounds.

We begin with several useful definitions. For each icE let

xi - 1 if arc I operates

- 0 otherwise

x = (xi, icE) - a state of' the network

Xp- set of all states x such that

_I/

j'*~~*~* *. , ** *. * . * -. . .. .. ,... . . . .



S xL  S 0, , ...1
i C E ..

Pi - probability that arc i operates

and

P(x) - probability that state x occurs.

Observe that if failures occur independently then

P(x)= 1 [-p. + xi(2p-1)] xEX = X . (4)

i E 1 1 1

Lastly, we define the structure function

*(x) O(x; s,T) - 1 if node s is connected to all nodes

in T

0 otherwise

and the s-T connectedness probability

g = g(s,T) = ¢(X) P(x) .
xEX

Note that if T = {t} then the existence of an operating path from

s to t implies connectedness. If T - V - Isj, then the existence

of a spanning tree implies connectedness.

1. Sampling Plans

Let r denote the set of all sampling plans {F(x).Q(x); XEXJ

where each {w(x)f is a binary function of the form

*(x) = (A-B) (x) + B 0 < B S g S A < 1 (5)

and IQ(x)} is a sampling distribution such that

* (x)Q(x) -g,

xCX

• .
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or equivalently,

X *(x)Q(x) - (g-B)/(A-B).
xEX

If one draws K independent samples x(1),...,x(K) from {Q(x)} then

1 K U
gK "(x ) (6)

j-

is an unbiased estimator of g with

var g= (A-g)(g-B)/K S (A-B) 2 /4K (7a)

and coefficients of variation

(var gK ) !/

Y(g A,B) = (/ (A-B)/2(KAB) (Tb)

and

- 1/2_(var gK ) I / 2

A,B) - (va -(A-B)/2[K(1-A)(1-B)]1 /2 . (7c)
K 1-g

These results which follow from maximization of (A-g)(g-B),

(A-g)(g-B)/g 2 and (A-g)(g-B)/(1-g) 2, respectively, have several

notable features. Observe that they apply for dependent as well

as independent arc failures. Also, observe that min( IA-gl , Ig- )
moreso than A-B determines the magnitude of var gK' revealing

the greater benefit of a single tight bound as compared to a

small interval A-B. For an absolute error c as in (1) one has

K S [8(6)(A-B)/2c]
2  (8)

where
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IgK g~(
0(6) -miniB: pr[ / > 8] s 6}-

(var K-

For a relative error c in (2) and (3) one has, respectively,

K : [0(6)(A-B)/2c] 2 /AB (9)

and

K S [0(6)(A-B)/2c] 2 /(I-A)(1-B). (10)

To compute the bounds in (8), (9), and (10) one needs to

know 1B(6), 0 < 6 < 1}. Although S - K(g - B)/(A-B) has the

binomial distribution with parameters K and j - (g-B)/(A-B), this

is o" limited value at this point since ± is unknown. From

Chebyshev's inequality one has

8(6) - 1161/2, (11)

which leads to a conservatively larger upper bound than is gener-

ally required.

Observe that as K w the distribution of (S-Kp)/[Kp(1-v)]1 / 2

converges to the standard normal distribution. Since K needs to be

large when e is small, one may in such a case use

(6) 1 e 2 dz - (1-6)/2] (12)
(2w) /12

in (8), (9) and (10), but noting its approximating nature. These

bounds on K provide a convenient prior assessment of worst case

effort and make clear the desirability of striving for short in-

tervals [B,A].

Procedure BOUNDS describes the steps needed to perform K

independent replications on a Monte Carlo experiment using a sam- p . .
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pling plan in r. Observe that gK is the maximum likelihood

estimator of g and V(gK) , apart from the division by K - I

instead of K, is the maximum likelihood estimator of var g
K

The use of K - 1 in place of K makes V(gK) unbiased in small

samples.

Procedure BOUNDS

Purpose: To estimate g(s,T).

Input: Network G = (V,E,s,T), bounds A and B, sampling

distribution JQ(x), xEXj and sample size K.

Output: Point estimate g of g(s,T) and point estimate V(gK) of

var g

Method:

I. Initialization

Start with SEO.

- . Ii. On each replication !,...,K do:

a. Determine state by sampling x from {Q(x)I.

b. Check for s-T connectedness; if connected add 1 to S.

III. Computation of final estimates

a. gK = (A-B) SIK + B.

b. V(g K ) = (A-B) (1-S/K)(S/K)/(K-1).

End of procedure.

. .-

• . . _ ., . . .. ., . .. ... _ ... ... .* .. .... ._



1.1 Crude Monte Carlo Sampling

The significance of a sampling plan {ip(x),Q(x)j can

stood best by first considering the simplest form of Mont,

sampling. Here A - 1, B = 0 and Q(x) - P(x) so that

(K)
S ) are the outcomes of K independent Beri

trials with parameter g and

var gK = g(1-g)/K.

If arc failures are independent then P(x) has the form (4

that determining the status of each arc is itself an inde

Bernoulli trial.

Now observe that g(1-g)/(A-g)(g-B) gives the number

cations needed to achieve the same variance with crude Moi

Carlo sampling as one obtains using the bounds B and A.

fore the worst relative performance, with regard to varia

a sampling plan based on B and A occurs when this quantit

minimal; namely at

~g' - 1/11+[(l-A)(1-B)/AB]1/21

so that g'(1-g')/(A-g')(g'-B) provides an a priori lower

the potential variance reduction.

For the remainder of the paper we assume arc failure

independent. Procedure B describes how one samples from

P(x)1, using W - E as input in 0( IE ) time.
I

p-

.
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Procedure B

Purpose: To sample the status of each are icW.

Input: W and {pI, icW}.

Output: x - jx i , icW1.

Method:

I. For each icW do: sample U i from U(0,1) and set

xi L Pi + uiJ.

End of procedure.

2. Bounds Based on Minimal Cardinality Paths and Cutsets

Crude Monte Carlo sampling makes no use of prior information

regarding the network under study, a weakness that can be re-

moved, at least conceptually, with minimal effort. For the net-

work G, there exists a set of arcs M - M(s,T) such that at least

arcs must operate in order for s-T connectedness to be possi-

ble. Also, there exists a set of arcs C - C(s,T) such that at

least H arcs must fail in order for s-T disconnectedness to be

possible. For example, for T = {t} M denotes the s-t path of

minimal cardinality and C denotes the s-t cutset of minimal cardi-"

nality. For T - V - {sJ, M denotes the s-T spanning tree of mini-

mal cardinality and C denotes the network cutset of minimal cardi-

nality.

The significance of M and C is that for every integer L 6 .j

O(x) - 0 for x e XL-1

and for every integer H S IZI
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O(x) -1for x c X JE I X JE

To incorporate this information into the sampling procedure, one

sets

A - I P(x) (1 3a)
XEX L-1

B =1 -Px (1Xb
XEX 

13 H

and samples x using the distribution

Q(x) -P(x)/ (A-B) x C x E -- XL-1(4

To benefit from these bounds, one first needs to know

and .The determination of M takes 0(14~ time and of C takes

OC IA 2/31J4 ) time (Papadimitriou and Steiglitz, 1982, Th. 9.3, P.-

*213). Presumably L and H are then chosen so that the calculation

*of A and B are computationally feasible. For example, if pi p

icE then with ease one can choose L.. and H - and compute-

A - 1 - FL-1(1 IP)
and

B -1 F14H)

where H ,)

F (n,O) n n)e(l,)n-i 0 (6(1 0 1 S n,
i J-0
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in O( II ) time. By contrast, for unequal p one needs to perform

O( 1 C )) steps to compute A and O( ( steps to om-
i- i -

pute B, tasks that may be burdensome if 14 and PI are large and

one takes L = HI and H = PI. When this is so, choosing smaller

L and H reduces the burden, but also widens the interval A-B.

In contrast to the independent Bernoulli sampling for each

are's status in Procedure B, the present procedure calls for sam-

pling x on each replication subject to the constraint

L S x. i S H. (15)

For the case of Pi = p icE, Procedure BIN can effect this sam-

pling, with n = EI , e = p, a = IH , b = ILI and W - E as input, -

in O( IJ ) time. In particular, step lib determines the number of

operating arcs in 0(1) time if one uses the cutpoint method of

sampling from a discrete distribution as described in Fishman and -

Moore (1984). This method requires the preparation of two tables

prior to doing any sampling. These tables, whose computation

take O( IE ) time, are constructed in such a way that subsequent

sampling on each replication takes constant time, independent of

IC IEI and .I As an alternative one may sample k in step IIb

using the alias method of Walker (1977) as described in Kronmal

and Peterson (1979) in the same time.

Once k is known, there are k ways of assigning the k oper-

.k-
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ating arcs among the P arcs. Step IIIb selects the combination

m that is to be used on this replication in 0(I) time and step IV

uses the k-canonical representation of the integer m (Kruskal

1963 and Katona 1966) to identify the arcs that operate in O lE )"

time. Additional details about this sampling method appear in

Fishman 1 983b).

Van Slyke and Frank (1972) first proposed using the bounds

in (13) to reduce variance in Monte Carlo experiments in the case

of independent arc failures with pi = p icE. Herea'ter we call

these the VSF bounds. An extension of this approach is also

possible. One takes L > 1, H > l and sets

A = 1 - P(x)- *(x) P(x) (16a)
x I-1 xeX xLx

and

B - 1 - P(x) - O(x)P(x). (16b)
X IE-c x X -C - x ':H

The idea here is that one selects L and H and uses the resulting

A,B and {Q(x) , as constrained by (15), to effect a greater

variance reduction than L - I and H = KI allow. This nibbling

away at the reliability computation has an increasingly beneficial

effect as min p 1i I since the term for which [ x, = JE-Cj becomes
i iEE

important in (16a). It has a similar effect when max p. * 0 since

i
the term with [ x i - H becomes important in (16b). The feasi-

icE
bility of using this method depends on the ability to compute

B ""

.° p . . .
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Procedure BIN

Purpose: To sample the status ofi each arc i in W.

Input: n,e, {Fi(n,e); i O,1,...,n), a,b,W - {w1,...,wn}.

Output: x- {x1 , ieW}.

Method:

I. Initialization

a. For each ieW, set xi = 0.

II. Determine the number of arcs that operate

a. Sample U from U(0,1).

b. k -r in j: Fj(n,8) - Fb-1(n,e) > U[Fn,,a(n,8) -

Fb,1(n,e)]; b L j < a).

III. Determine the "number" of the combination

a. Sample U from U(0,1).

b. m = L( n )uJ.

IV. Determine status of arcs

a. w = k and A = m.

z
b. Until A - 0 do: y = max[z: (z) < A];

i Wy+ I ; xI = I ; A = A - and w w .
(A)

c. Until w = 0 do: i - w; = 1; and w - , - 1.

End of procedure.

.~~~~~ . .
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*(x) for each x e XL X H and x c X IE-CI X H since the compu-

tational feasibility of A and B in (16) are in question even for

the special case of equal p1, the general applicability

of this approach is even more limited.

3. Bounds Based on a Control

The bounds [B,A] in Section 2 are global in nature and ex-

ploit a relatively small amount of information about the network

under study. Moreover, their application is severely limited by

the fact that only in the case of equal probabilities are the

bounds B and A easily calculated and the arc states easily sam-

pled. The present section considers more informative bounds that

rely on the status of a subset of arcs and shows how the result-

ing local conditionality enables one again to achieve a variance

reduction. This approach is originally due to Kumamoto, Tanaka

and Inoue (1977), but the presentation here is considerably dif-

ferent in organization and more comprehensive in character. We

refer to the resulting bounds as the KTI bounds.

Let {€i(x)} and {€2(x)j denote binary functions on

10,1 } such that

01(x) S O(x) S 02(x). (17)

Then for

- -
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i Xi (1 X) P (X) i=1, 2
xCx

one has

Observe that 9 2

Wx-()- 1 if W1 x) -1

. 0 if *1 x) - 0

and

=2x x - 1 if' 0(x) - 1

. 0 if' O(X) - 0

so that

01(X)O(X) 0 1 CX)

and

02(x)O~x O(x).

Let

Q(x) - 2 g P(x) xEX (18)

and suppose one samples x from lQ~x)1. Then

Z *(x)Q(x)

which suggests that one take B g1  and A 92g- Then var i*(x)

-(g2&g)(gngj)<g(1,0g).

Two remaining issues concern the selection of' f(x) and

f0 (~jand the method of' sampling f'rom {Q(x)l in (18). For
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T Jt}, Kumamoto, Tanaka and Inoue suggest that one can deter-

mine a lower bound {€1 (x)} based on minimal s-t paths and an

upper bound {€2 (x)} based on minimal s-t cutsets. In particular,

let P 1,...,PI denote I minimal s't paths and Cl,...,Cj, J minimal

s-t cutsets for the network G - (V,E). Then (17) holds for a

coherent system if one defines the bounds as
I

0i(x) = 1 - - xi) (19a)
J-1 iEP .

and

2(XI [ - if (1-x )]. (19b)

J-1 icC.

Observe that (19a) and (19b) act as controls on the values that

the structure function {l(x)} can assume.

To implement this approach, one needs to determine

P1,...,PI and CI,... Cj, compute g, and g2  and devise a

sampling plan for x. Kumamoto, Tanaka and Inoue address only

the sampling issue. Let

I J
( u P)u( u C )
J-1 J-1

so that sampling xI for icE-Q involves a Bernoulli trial. Sam-

pling arcs in a takes more care. Kumamoto, Tanaka and Inoue sug-

gest sampling these arcs sequentially. Define two disjoint arc

sets QI and 0l2 such that 2 and de'Ine

( 1 1 - II (I- n x n p)J- iCPju Q iCPjui

2.. ..........-...... ........... "....
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and

2 (aito2) - [- 1i (1-x ) n
j 1 t C j u i2 I 1 C j u f2 2

i- ~ j~ 1  ""i Ju~

Then

2 (  ' 2 -  r } ) - 1 ( 0 'o 2 - Ir } ) ] p r

pr(x r - p 2 gr 92 - 91

and (20)

[€2 ai a 2 - r  I- I a I ,1 2 - r  l ] p r

pr(xr I x i , i ) = L 2 1  2  1  2  r

I l I > 0 , c 2

One sees that the evaluation of *2(., •) and €(I(.,.) can take

J I

0( 1 IjI) time and O( IPjI ) time, respectively, so that for

J I

all arcs in a these computations take 0( Ill ( I + J II ))
J-1 J-

time.

Without any f'urther specification, the computation of g1

I J

and g 2  takes 0(2 j ) and 0(2 - ) time, respec-

tively, and, in fact, the time required to determine I paths

and J cutsets remains in question.

To reduce sampling time when the determination or

P1 ,.--,PI
, C1 ,...,Cj, g, and g2 are computationally feasible

we suggest the following more efficient method. Observe that
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Q(x) - Q(y,z) - Q1 (Y)Q2 (z)

where

y - fx i , icEI 4 z jxJ, iEE-},

2 (y)- 1 (y)
Ql(y) - II Exi(2p. 1)+l-p i ]

g2 gl ii

and
Pr

Q2 (z) Ci I (2pi-1)+1-pi].
I2 iE- Q

Now one can compute the

n 1 ([2
(y) - 0 1 (y)] (21)

yEY

entries for {Q1 (y)} in 0(2 ) time. Provided this is computation-

ally feasible, one can then use these entries to compute tables 'or

the cutpoint method of Fishman and Moore (1984), also in 0(2 IEI)

time, prior to experimentation. Lastly, one needs to create a 1-1

mapping from the n outcomes to their corresponding stored vectors y

- (xi , iEcl). Then on each replication sampling from this {Q(y)}

occurs in 0( Inj ) time.

As the size of the network grows the effectiveness of this meth-

od of variance reduction can only be maintained if 0 grows with E.

Therefore, there comes a point at which the tabling method is no

longer feasible; nor are the determination of P1,...,PI, C1,...,CJ,

g, and g 2 computationally feasible without additional -estric-

tions. To solve this problem we propose that the paths P1 ,...,PI be

.* . . . .

. . . . . . . . . . . .

.° ° . • .. °. ,% 1 .- . . ,. % . . • % . °. , . •. . ° . . • °.. . . . . ",
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chosen edge-disjoint and the cutsets CI,...,Cj be chosen edge-dis-

joint. This offers immediate advantages.

First, it is clear that I < J , C being the s-t cutset of mini-

mal cardinality. In fact, one can achieve I - Pi and determine

PI,....PI in O(i N1 ) time using a network flow algorithm with unit

capacities, as described in Wagner (1975, p. 954). Second, J<

where M denotes the s-t path of minimal cardinality. Here one can

determine the J - M] disjoint cutsets in O( ) time by beginning

at node s and appropriately labeling arcs. Third, edge-disjointness

I J
implies that g 1 and g 2 are computable in 0( 1 IP ) and 0( 1 rj )

j-I j=1

times respectively.

Fourth, one can sample all arcs in E in O( jE ) time.

Procedure Q describes such an algorithm. In parkiclar, it uses

the quantities:

A0 = 0

i= C P
* j i.

j = 11 (1-pi) j I J
iEC

J I
A I 1- n (1-x )

. ..

..
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j

(1i

Ji = j if' iePj

=0 if' it
k=

and

" J if iECj j 1 .

-0 if it Ck

k-1

Here IJi} and {k 1 l are pointers identif'ying the path and cut-

set, respectively, to which arc i belongs,

4. Boinds on Bounds

I' one ises a table or Procedure Q then an (E,6) absolute

criterion ha,. O(max( liA, 14 )[8(6)(A-B)/2E] 2 ) worst case time from

(7a) and (E,6) relative criteria have O(max( Iv i, II )[B(6)(A-B)/2c] 2 /AB)

and O(max( lvi, 10 )[B(6)(A-B)/2c]2 /(1-A)(1-B)) worst case times from

(7b) and 7c) respectively. While (19) leads to a variance reduction,

it is important to nderstand exactly how these worst case times behave

as a function of fPi, icul and as a function ol" the size of the network

G. For convenience of exposition we assume *PIJ ;5 ... S I Px1  and

• "

.........................................................................................
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Procedure Q

Purpose: To sample the status of' each arc i in E.

Input: E, Pi, IEE}, I, J, {Aj; j=0,i....I},

., [wj; J=O,1,...,J}, A, ,o jjivki; i l}."

Output: {x i , icEl.

Method:

I. Initialization: A w and p = X.

II. Sample arcs in E-Q

If Pi = p for all ieE-Q, then use Procedure BIN to

determine status or these arcs.

Otherwise: For each arc i in E-Q, sample U from

U(0,1) and set xi = Lpi+UJ

III. Sample arcs in Q

For each arc i in Q do:

a. Compute the probability that arc i fails

W [1- /( -pi)]; X = (X- i )/(-x )
1-Wk. L k Ji

and q - (w-x)P /(A-p).
i

b. Determine the state of arc i

Sample U from U(0,1) and set xi - L u-.q+1 J

c. Update parameters for the next arc

= w/[1-xiwk /(I-Pi)]; wk =  ( -xi)wki/ (1-Pi)

/pi] "  A. = A xi/p.;

A - w and p A A.

End of procedure.
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1 I - ' < . jl, note that IP11- J , I S , riI Z H an

H , and begin with Y(gK; A,B) in (7b).

4.1 Boundedness with Respect to Ipi, iCQ}

Observe that for disjoint paths

I
B = g1  = I - i (l- n pi) (23

j=1 iCP*

and let

r = max fl pi

1<j<I iEP .

and

N = nimber of paths k for which 1I p = r k = 1,..
Pk

Then one can write (23) in the more concise form

B = Nr + o(r) (21

where o(w) denotes a function h(w) such that m h(w) ,w.O W

Now observe that for disjoint cutsets

J
A - g 2  " II [1- n (1-ps)] (2

j-1 i C

and let
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q max p J-1

q 1i q
J-1

and

M. = number of p. - q. icC J -J 1 .. .

Then A has the more concise representation

J
A - q n M. + o(q). (26)

j=1 J

Note that (25) and (26) hold regardless of whether or not

Pl,...,Pj are disjoint and Cl,...,Cj are disjoint.

With regard to (7b) one has for a given network G

J2
2 [ M-Nr/q + o(q)/q- o(r)/q

* (A-B)' _q [j- .oq/q~(7. ... (27) :,
AB r J

[ II M + o(q)/q][N + o(r)/r] "
j-1

which is finite for all 0 < Pi S 1 ie if and only if

q - r. (28)

This condition is met for P1 = 1qj, J = I .... JI. For the spe-

cial case Pi = p ico only IP1I - J is needed.

We now turn to Y(I-gK; AB) in (7c) for which one has

the alternative representations

-I

B 1 1 - q II M o(q)j.1 J

where

S
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I

q q T j
j-1

q -max (1-p.) j - 1).....I

M -number of p I- q on path P.J .

and

A - 1 - N r + o(r)

where

r - max n (1-p.)
lj J ieCj -

and

N- number of cutsets k for which II (1-pl) - r k - 1..... .
icCk

Then for a given network G

)2 1 M - N r/q + o(r)/q- o(q)/q]
(1-A)1-B) r .- i - (29) .-

r M + o(q)/q][N + o(r)/r]
j- j

which is finite for all Pi iea i," and only if

q r. (30)

This condition is met for C I - 11-qj; J-1....I}. For the

case pi p ica only I - I is needed.

These results carry considerable practical importance for

they reveal conditions under which the time to achieve an esti-

mate of g or 1-g with specified relative error is finite for a

. .*.'.°.
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given network G regardless of the arc probabilities 1pi, iEE}.

Moreover, the forms (27) and (29) provide valuable guidance when

choosing paths and cutsets. For example, choosing paths and cut-

J
sets to mimimize 1I n NJ is a desirable objective with regard toj=1 j

J
(29), as is choosing them to mimimize III Mj-NJ with regard to (27).

J-1

4.2 Boundedness with Respect To Network Size

When one turns to the effect of network size on the complex-

ity of a Monte Carlo experiment with an (c,6) accuracy criterion,

one quickly realizes that the way in which the network grows is

of crucial importance. In particular, the effect on g(s,t) is a

central consideration. Since this topic deserves considerably

more space than we can afford here, we limit our comments to a

special but interesting case.

By network growth we mean an increase in the number of arcs.

Recall that M and C denote the s-t path and s-t cutset of E o

mimimal cardinalities. If" the sizes of M and C remain constant

as E grows, then it is always possible to choose a set of dis-

joint paths Pl,...,PI I Z 1 and a set of" disjoint cutsets

CI,...,Cj J a 1 such that the resulting bounds B and A are

I J
functions only of the arc probabilities {Pi, iE I P I and 1pi' ic I C }J-1 J.1

..
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respectively, so that the analysis in the previous section applies.

Then a Monte Carlo experiment using Procedure Q and a depth-first

search algorithm to determine connectedness meets the absolute error

criterion (7a) and the relative error criteria (Tb) and (7c) in

OCmaxC 1i 14 )) time.

A question remains as to how interesting is the set of networks

that satisfy these restrictions on M and C. If the vertex degrees of

G are bounded from above then the constraint on C is not unreasonable.

However, the restriction on M may be more dif'ficult to justify.

Clearly, more remains to be said about bounds on bounds as E grows.

5. Example

An analysis of the network in Fig. 1 illustrates the benefits

and costs of the VSF and KTI bounds for s-t connectedness. The net-

work has 30 arcs, limiting the feasibility of directly calculating g.

Insert Fig. 1 about here.

The example assumes independent failures with p. = p

icE, p - .5, .9 and .95, fs} - 1 and jt} - 20. For the VSF

bounds we have L - - 5 and H - - 3. For the KTI bounds

we consider two cases. Case I has

Q {1,2,3,4,9,11,18,19,27,28,29,30}

P1  
=  {1,4,11,19,28} P2 

=  {3,9,18,27,28}

C - f1,2,3} C 2  - 128,29,30}

and case 2 has

• ' " "-".% ,--' '", '-.•o - . , - ". """. - - . ." • •-- * . • . . . * . -
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EQ - 110,13,16,20,23,261

PI - {3,9,18,27,28} P2  1 1,5,12,21,291

P3  2,7,15,24,301 C1  - {I ,2 3} 

C 2  - {28,29,30} C 3  - {11,12,14,15,17,18}

C4  - {4,5,6,7,8,91 C5  - {19,21,22,24,25,27}.

Observe that for case I mIl - 12 enabling us to use the tabl-

ing method for 1Q1 (y)J. Although case 2 with h - 24 limits the

possibility of tabling, P1 , P2 and P 3 are disjoint and C 1 , C 2 ,

C3, C4 and C5 are disjoint, enabling one to use Procedure Q.

Table 1 lists the bounds 1-4A and 1-B together with the

Insert Table 1 about here.

bounds on sample size that (10) Induces for 6 - .05 and c - .05.

Observe that these worst case VSF bounds are of little value com-

pared to the KTI bounds. Also, note that the advantage of case 2

relative to case 1, with regard to a bound on K, increases with p.

One measure of the effect of a variance reducing technique

is the variance ratio g(1-g)/K var gK" A ratio greater than

unity indicates that the technique has the desired effect. A time

ratio T1 /T2 is also used where T1 denotes the mean time to

collect an observation using a crude Monte Carlo sampling plan

and T2 denotes the mean time to collect an observation using the

proposed method. Then [g(1-g)/K var x T1 /T2 gives the

relative time required to achieve a given variance with crude

Monte Carlo sampling as compared to the time required to achieve

this same variance with the proposed method.

........................
... .•.. . . . . . .
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Table 2 shows these ratios for the VSF and KTI bounds and

p - .5, .9, .95 for K 216 - 262144 independent replications

using Procedure BIN for the VSF case, a table of IQI(Y)} together

with Procedure BIN for KTI case 1 and Procedure Q for KTI case 2.

Insert Table 2 about here.

The results indicate that both the VSF and KTI bounds have advan-

tages, but the KTI bounds clearly dominate. Moreover, observe

that Procedure Q consumes considerably more time than tabling

does. Also note the a priori minimal variance ratio

g'(1-g')/(A-g')(g'-B) in Table 2.

6. Assessing Credibility

Since the worst case bounds of Section 2 often lead to con-

siderably larger sample sizes K than are required in specific

analyses, one is interested in ways of assessing the extent to

which a specific criterion is being met as the sampling experi-

ment progresses. Although a statistical literature does exist

for sequential sampling to achieve a fixed width confidence inter-

val, (e.g. Chow and Robbins 1965) the fact that it relies on asym-

ptotic behavior (c + 0) limits its appeal. As an alternative we

describe how one can assess the credibility of an absolute or

relative error criterion as the experiment proceeds.

Recall that g - (A-B)p + B. Therefore, criteria (1),(2) and

(3) imply E[v , J*] where for (1)

"'"-"v ." "."'-"-".-.. "*.-.,. " .."...."-..." ....."-' "-* -. " - "-. ...- " . -.-.- "-.-.. . -. .. ..... .".. . '
S~ -



max(O,S c~K A-B

m in(1, + -).

far (2)

1 =a[ '*~c- K A-B

*1 c B
=minl-(

'1*E K A-B

and for (3)

I c(I-B)

maxio ,1 -c K A-B

min.' K A-B

*Since S has the binomial distribution one has

:rUjtC:*,:*j 1 FSZK::Lp2*2 a relative, (3
F eing the binomial distribution function.

Tabe 3shos tis robbilty fora rlatveerror criteri-

on c - .05 for 1-ag for case 2 of the KTI bounds. By choosing

powers of 2 for K we insure that at each successive evaluation

half the data provides new information. Observe that one may be

Insert Table 3 about here.

confident in terminating the sampling experiment at K =10241 for

p - .5 and at K -32768 for p - .9 and .95. IMSL (1982) and SAS

(1982) provide routines for evaluating the binomial distribution.

.7
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7. Confidence Intervals

While the credibility analysis of Section 6 provides consid-

erable guidance, one would also like to evaluate the precision of

gK more explicitly at the end o' an experiment. Conf'idence

intervals provide one way of making this assessment. As the next

two subsections show, different methods exist for constructing

these intervals. Section 7.1 describes an exact method that re-

quires some care with regard to computation. Section 7.2 de-

scribes a relatively simple method whose results rely on either

general bounds or asymptotic limits.

7.1 Exact Confidence Intervals

Suppose that exactly S successes occur in K independent trials. - -

Then there exist 2-tuples a ,!,) and (w2' e2 with 0 < < u2 <

and 0 < al < a2 < 1 such that

I F _i(Ki i )

and

Fs(K, 2 ) - -a 2

Let

O(a(1 F K )1 a1 (w1: FS.CK, 1 ) = 1 - a1)

and (32)

0(a2) - Cu2: FS(KIJ2 ) - 1 - a2 ).

. . -," |

-.. - ."- o -
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Then [e(a) e(a2] is a confidence interval for u at confidence

level a 2 -a 1" Since there are many a < a2 that satisfy a =
2 ,]

a- aI' one way to proceed is to choose a and a2 to minimize

E(a2 ) - o( I ), subject to 0 < a I  < a 2  < 1 and a = a2 - alI' thus

giving the shortest interval at level a. An alternative way to

proceed is to choose a 1 - (1-a)/2 and a2 = (1+a)/2 so that each

tail has equal probability.

To facilitate the determination of O(aI1) and O(a 2 ) in (32)

observe that (Abramowitz and Stegun 1964, p. 945)

e!

1-F (n) - f (n)wJ-l(1-w)n-idw. (33)
0

j~ - 0

Therefore (al) calls for an evaluation of the inverse Beta

distribution with parameters S and K - S + I and G(a 2 ), for an
2i

evaluation of the inverse Beta distribution with parameters S + 1

and K -' S. Procedure INTERVAL describes how to compute the short-

est confidence interval at level a. Although standard computing

packages exist to perform the inversions for O(a.) i = 1,2 in step -

IIc, experience with such packages in IMSL(1982) and SAS(1982),

indicates that a large K severely limits their abilities to pro-

duce numerical results when S<<K. It is precisely in such cases

that one may be willing to settle for bounding or approximating

results.

. . . -.
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Procedure INTERVAL

Purpose: To compute a confidence interval for g at level .

Input: Sample size K, number of successes S, bounds A and B,

confidence level a and grid size N.

Output: a confidence interval [g,,g*] of shortest

length.

Method:

I. Initialization

a . L - 0 and U = 1.

II. Search for shortest interval

For each i = ',...,N-1 do:

a. e1 = (!-a)(i/N).

b. (2 1

c. For j 1,2 solve (31) for e(aj).

d2. If U - L > (a (i), then set L = 6(aI ) and

U = e(a )"

III. Compute confidence Interval

a. g, = (A-B)L + B.

b. g = (A-B)U + B.

End of procedure.

1
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7.2 Intervals Based on Probability Inequalities and Limits

As Section I indicates, inequalities and approximations

exist that can be used to compute worst case upper bounds for K

for specified 6 and c. These inequalities also are of value when

computing confidence intervals. Consider the probability state-

ment

pr{ P/2 " < (1-a)} - a 0 < < 1. (34)A- K Bg ]11

By rearranging terms in the argument of pr{.} in (34), one can

assert that with probability of at least a the interval

(A-B)S+KB+(A+B)a 2 /2±B(A-B)[B2 /4+S(K-S)/K 1 1 2  (35)

K + B2

covers g, where B 8(1-c). As in the case of worst case bounds

one determines B(1-a) for a specified confidence level a from

(11) for Chebyshev's inequality and from (12) for the normal

approximation. Table 4 presents the bounding and approximating

.95 confidence intervals for 1-g for the network in Fig. 1.

I4

Insert Table 4 about here.

p.°

..- 

... 
.. 

.
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8. Essential Steps for Implementation

The results of this paper show that an effective Monte Carlo

procedure, based on bounds B and A, exists for estimating g(s,T)

in worst case time 0(max( IJA Ii ) " D) time where D - (A-B)2 for

a given (c,6) absolute error criterion and D

(A-B)2/min[AB,(1-A)(1B)] for a given (c,6) relative error criter-

ion. Moreover, the number of replications required to achieve

these worst case bounds can be computed prior to experimentation

and used as a guide. Of the two methods of deriving bounds de-

scribed here, the example of Section 4 shows that the KTI bounds

are most beneficial, especially for p close to unity. Therefore,

we recommend that the KTI bounds be used in practice together

with the following steps:

1. Determine a set of edge-disjoint s-t paths Pl,...,PI.

2. Determine a set of edge-disjoint s-t cutsets CI,...,Cj.

I
3. Compute B from Pl,...,PI in O( I 1 Pi I) time and A from

j-
JcI  ... cj in O( I [ cjI ) time.

j--1
4. Choose a (E,6) absolute or relative error criterion

((I),(2) or (3)) and assign values to E and 6. Then

determine the bound K* on K accordingly from (8), (9) or -

(10). Use this value for guidance.

I J
5. If P " I([ P)u C )I is small enough, then compute a

J -1 j -1

table of the probability mass function JQ1 (y)} in

.......... .......... .
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0(2 ) time.

6. For the sampling experiment use Procedure BOUNDS.

a. Table approach:

Sample arcs in E-Q using Procedure B if the Pi are

distinct and using Proced-ire BIN i" they are equal.

Sample arcs in 0 from a table of {QI(Y)}.

b. Sequential approach: Use Procedure Q.

Steps a and b each take 0( t1 ) time.

c. Check for connectedness using a depth-"'irst search

in 0(max( li, IFI )) time.

7. If the sampling experiment is to be performed in blocks

of K 1 , K I  + K 2 , K1 + K 2  + K 3 , replications, etc., then

aPter each block compute the credibility probability

(31). Suggested increments are Ki = K 1 2i -  for i =

1,2, ...

8. After completion of the experiment compute a confidence

interval for g, as in Section 6.
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Table 1
Bounds for Relative Accuracy Criterion (10)

6 - .05 and E = .05

Bounds on K
1-B 1-A Chebyshev Normal

p-.50
VSF .1000xi0 1  .2974xi0 -4 67x10 6  13xi0 6

KTI 1 .9395 .2344 4515 867
2 .9092 .2697 3335 640

p=. 90
VSF .5886 .1828xi0 - 2 1  64xi0 2 3  12x10 2 3

KTI 1 .2064 .1999xl0T2  202522 38898
2 .6867xi0 -  .2002x10- 2  64659 12419

P=.95

VSF .1878 .3352xi0-2 9  11xi0 31  21x10 30

KTI I .8269xi0I .3031x!0- 3  541635 101671
2 .1158x10- I  .2500xi0"3  88683 17033

........................-
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Table 2
Variance Reductions

K - 2 62 144

-g(1-g) g' (1-g') T 1 g(1-g) T 1

Kg, T - TKvargK  (A-g')Cg'-B) 2 KvargK 2

p-.50

VSF .7104 1.00 1.00 .94 .94
KTI 1 .7094 1.89 1.88 1.04 1.97
KTI 2 .7105 2.35 2.31 .24 .56

p=. 90
VSF .2933xl0-2  1.70 1.70 .91 1.55

KTI I .2862x10- 2  16.67 5.83 1.00 16.67
KTI 2 .2867x10 2  50.22 20.93 .26 13.06

P=.95
VSF .2938xi0-3  5.33 5.32 .82 4.37

KTI 1 .2887xi0-3  95.04 13.63 .97 92.19
KTI 2 .2940xi0 - 3  592.23 118.46 .23 135.49

t g is estimated by gK in the quantity g(1-g) and var gK is

estimated by V(g

K..... -
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Table 3
Credibility Results

pr[l gK -g I > .05(1-g)3

KTI Bounds, Case 2
•K P-.5 P-.9 P-.95

,h-

2 .869 1.000 1.000
4 .755 1.000 1.000
8 .615 1.000 1.000

16 .671 1.000 1.000
32 .504 .927 1.000
64 .343 .892 1.000

128 .197 .841 1.000
256 .657x1071  .778 1.000
572 .821x10-2  .664 .531

1024 .242xi0-3  .561 .559
2045 .281x10- 6  .398 .407
4096 .371x10- 1 2  .223 .219
8192 .217xi0 - 2 3  .802xi0 -  .848xi0 "1

16384 .235x10'4 5  .134x10 1-  .126x10-1

32768 .000 .559x10- 3  .248x10'3

65536 .000 .858xI0 - 6  .123x10 6

131072 .000 .160xi0 - 1 1  .196xi0 - 1 5

262144 .000 .336x10- 2 2  .114xi0 - 2 9

.j ,- .°

• _% o •N . .° ... .



Table 4
.95 Confidence Intervals for 1-g

Chebyshev Normal

KTI 1

P-.50

lower .7065 .7087
upper .7123 .7107
width .5775x10-2  .2531x10*,2

P..90
lower .25xO.2813x10-

2

upper .2751x102  .29114x1 2

width .2321xl10 3  .1015xlo03

p-.95
lower .2759xlo03  .28214x1073

upper .0x0 3  .2961xlo0 3

width .3l81xlO'4 .1372x10-4

KTI 2

p=.50
lower .7079 .7094I
upper .7131 .7117
width .5169x10-2  .2265x10-2

p=9 20x0 2 .2839xlcF2

lower .84l!:

upper .2935X10-2  .2896x10-2

width .1319x10 3 .0'x0

lwr.2883x10- 3  .2914xlo03

upper .3066x10-3  .2968x1t?3

width .1234x10 1 4  .5396xl10 5

-z' - zi-1
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